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Abstract—Odor Source Localization (OSL) is a technology that
navigates a mobile robot to autonomously locate a hidden odor
source. Unlike traditional OSL navigation algorithms, which rely
solely on olfactory data, this paper introduces a semantic OSL
navigation algorithm that integrates both visual and olfactory
sensing to enhance the search performance. By combining these
two modalities, the proposed system can infer potential odor
sources and their locations. For example, when detecting the
smell of smoke in a kitchen, our system can associate the odor
source with an oven or microwave. To leverage the semantic
relationships between visual and olfactory observations, we em-
ploy a Large Language Model (LLM) to process the multi-modal
sensory data and guide the navigation. The proposed LLM-
based navigation algorithm is evaluated in a simulated household
environment. Simulated results demonstrate that the proposed
method can achieve a higher success rate and shorter travel
distance, compared to random walk, vision-only, and olfaction-
only approaches.

Index Terms—Robotic Odor Source Localization, large lan-
guage models, robot navigation, household robots.

I. INTRODUCTION

Robotic Odor Source Localization (OSL) enables a mobile
robot to autonomously locate hidden odor sources [1]–[3]. This
technology can replace humans in hazardous environments and
has a wide range of real-world applications, including locating
chemical gas leaks [4], detecting hydrothermal vents [5], iden-
tifying wildfire locations [6], [7], and monitoring air pollution
[8]. The effectiveness of OSL depends on the design of a
robust navigation algorithm, which directs the robot toward the
odor source based on environmental observations. Similar to
image-based navigation algorithms [9], which use visual cues
to guide movement, traditional OSL navigation algorithms rely
solely on olfactory data, such as gas or chemical concentration
levels, to inform the search process.

This work proposes a semantic OSL navigation algorithm
that integrates both visual and olfactory sensory information
to improve search performance. The fusion of vision and
olfaction is inspired by human odor-searching behavior [10].
For instance, when we detect the aroma of coffee, our instinct
is to visually scan the environment for a possible source. If
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Fig. 1. An overview of the proposed LLM-based semantic OSL navigation
algorithm. The LLM will be provided with both vision and olfaction sensory
information to infer possible odor source objects and generate an action to
guide the robot toward the odor source.

we spot a cup of dark liquid, we use vision to approach it and
olfaction to confirm. When no clear visual target is available,
we rely on olfactory cues to approach the odor source. In
this process, the olfactory sensing data contains rich semantic
information that can help infer likely odor source objects and
locations. For example, upon detecting the smell of coffee, we
might infer that the source is a coffee cup or kettle and that
it is likely located on a table or in a kitchen.

Recent breakthroughs in Large Language Models (LLMs)
have enabled artificial intelligence (AI) systems to interpret
semantics in textual [11] and visual inputs [12]. Leveraging
these advancements, our proposed OSL navigation agent uti-
lizes LLMs to process both visual and olfactory sensing data.
As illustrated in Fig. 1, the LLM receives visual inputs, i.e.,
the raw images captured from the robot’s front-facing camera,
alongside the olfactory data, i.e., the odor concentrations and
the type of detected odors. Instead of relying on a pre-trained
computer vision model (e.g., YOLO [13]), we directly input
the captured images into the LLM. The model then determines
the most suitable navigation action from a predefined action
pool, guiding the robot toward the odor source. We summarize
our contributions as follows:



• We propose an LLM-based semantic OSL navigation
algorithm. To the best of our knowledge, this is the first
work to leverage semantic information from both visual
and olfactory observations using LLMs for OSL tasks.

• We integrate Chain-of-Thought (CoT) reasoning [14] into
the LLM decision-making process, guiding the robot to
connect visual and olfactory sensing information.

• We evaluate the proposed algorithm in a simulated house-
hold environment, comparing its performance against
random walks and sole-modality searching strategies.
Results demonstrate that our semantic OSL navigation
algorithm achieves higher success rates and shorter travel
distances.

The remainder of this paper is structured as follows: Section
II reviews related works. Section III presents the proposed
semantic OSL algorithm. Section IV presents the simulated
household environment and the algorithm’s performance eval-
uation. Section V discusses conclusions and future research
directions.

II. RELATED WORKS

A. Traditional OSL Navigation Algorithm

Traditional Odor Source Localization (OSL) algorithms
can be categorized into three main groups: chemotaxis-based
methods, bio-inspired methods, and engineering-based (or
probabilistic) methods.

Chemotaxis-based methods guide the robot to trace odor
plumes by following the odor concentration gradient [15].
A typical setup involves two chemical sensors placed on
either side of the robot, allowing it to move toward the
side with the higher detected concentration [16], [17]. This
approach is effective in laminar flow environments, where odor
plumes disperse in a steady and coherent manner. However,
in turbulent flow environments, where plumes become patchy
and intermittent, the concentration gradient is often unreliable,
making chemotaxis significantly less effective.

Bio-inspired methods mimic the olfactory behaviors ob-
served in animals. For instance, moth-inspired strategies em-
ploy a “surge/casting” behavior, where the robot surges up-
wind when detecting an odor and switches to casting across the
wind when the plume is lost [5], [18], [19]. Another example
is the lobster-inspired method, which enhances chemotaxis by
turning toward the side with a higher odor concentration and
retracing its path when both sensors detect equal concentra-
tions [20]. Although bio-inspired methods are often simple and
computationally efficient, in turbulent flow environments, the
cross-wind casting strategy can be less effective, resulting in
longer search times and even search failures [21].

Probabilistic methods use mathematical and physical mod-
els to estimate the distribution of odor plumes and predict
the odor source’s location. The search area is divided into
cells, each with a probability of containing the source. As
the robot explores, these probabilities are updated based on
observations, eventually converging to a specific region that
likely contains the odor source. Algorithms for calculating

source probabilities include Bayesian inference [22], particle
filters [23], and partially observable Markov decision processes
(POMDPs) [24]. Path planning algorithms such as artificial
potential fields (APF) [25] and A-star [26] are then used to di-
rect the robot toward the estimated source. While probabilistic
methods provide a systematic and data-driven approach to odor
localization, they are computationally intensive, especially in
large search areas with many cells [21], which can be a
limitation for robots with constrained computational resources.
Additionally, these methods often rely on simplified plume
models and approximate global wind conditions using local
measurements, which can introduce errors in source estimation
[22], [23].

B. LLM-based Navigation

Multi-modal LLM-based robot navigation is an emerging
paradigm that leverages human-like high-level semantic un-
derstanding and reasoning abilities to enhance autonomous
decision-making. By integrating multi-modal LLMs with con-
ventional navigation systems, these approaches can analyze
human commands alongside sensor inputs to generate intelli-
gent, context-aware strategies for maneuvering in unforeseen
scenarios [27]. A research problem associated with LLM-
based navigation is the Object Goal Navigation (ObjectNav),
where the robotic agent needs to locate an object based on the
textual description of this object. Several different approaches
have been developed for this task, including CLIP on Wheels
(CoW) [28], VLFM [29], CLIP-Nav [30], VELMA [31], LM-
Nav [32], and A2Nav [33]. A core setup of these approaches
is to utilize the LLM as the “brain” of the robot to process
visual observations and guide the robot moving toward the
target object.

C. Research Niche

Compared to existing olfactory-based navigation algorithms
and ObjectNav methods, our approach introduces a novel
strategy by integrating two distinct modalities, i.e., vision
and olfaction, to infer search target locations. We leverage
LLMs to extract semantic information from visual observa-
tions (similar to ObjectNav methods) to identify potential odor
source objects while using olfactory observations to guide the
search direction and enhance efficiency (like olfactory-based
navigation). By combining these two modalities, the robot can
dynamically adapt to its environment, improving its ability to
locate odor sources more effectively.

III. METHODOLOGY

A. Problem Formation

A ground mobile robot is employed as the search agent, and
it is equipped with a camera for visual detection, a chemical
sensor for olfactory detection, and a depth camera for obstacle
detection. At each time step t during the search, the robot
receives visual observations v and chemical concentration ρ at
the robot’s position. In a vector form, the sensory observation
is denoted as: ot = [v, ρ]t. The output of the navigation
algorithm is an action at that directs the robot to move



Fig. 2. The framework diagram of the proposed semantic OSL algorithm. The
agent senses the environment and analyzes the vision, olfaction and navigation
data to make decisions.

toward the source location. Our goal is to find a function F,
which can produce effective robot actions at based on sensory
observations ot. Mathematically, we can present our goal as:

at = F(ot). (1)

In this work, robot actions at = {a1, a2, a3, a4} represent
four discrete actions, i.e., Forward, Turn Left, Turn Right,
and Turn Back. For observations ot, the visual observation
v is captured from the robot’s front-facing camera, and it
is provided to LLM directly. The olfactory observation ρ is
the odor concentration at the robot location, measured by the
onboard chemical sensor. This information is provided to the
LLM in a textual format.

B. Odor Distribution Model

In this work, we employed a Gaussian plume model [34]
to simulate the odor plume distribution. To calculate the odor
concentration ρ at the robot location p = (x, y), we use the
following equation:

ρ =
qs

4πD |p− ps|
exp(

−∆y · U
2D

+
− |p− ps|

λ
∆t) (2)

where

λ =

√
Dτ

1 + U2τ
4D

∆y = − (x− xs) sin(ψ) + (y − ys) cos(ψ).

(3)

In the above model, qs is the odor-releasing strength; D is the
isotropic diffusivity; ps is the odor source location; ψ is the
wind direction; and τ is the odor particle lifetime. We only
consider a single odor source, and since the search area is
indoor, we assume zero external wind (i.e., U and ψ are zero)
within the search area to simplify the problem.

C. LLM-based Semantic OSL Navigation

Fig. 2 illustrates the proposed semantic OSL framework,
which includes three main blocks, i.e., Environmental Sensing,
LLM Analysis, and Action Decoder.

Fig. 3. The semantic analysis instruction consists of vision analysis, olfaction
analysis and navigation analysis stages.

1) Environmental Sensing: In the environmental sensing
block, the robot gathers observations to describe its surround-
ings, including an RGB image of its front view, the odor
concentration at its current position, and a depth image of its
front view. Specifically, the RGB image is directly provided to
the LLM, while the current and previous odor concentrations
are converted into textual descriptions and fed into the LLM.
The depth image is used to detect obstacles; if an object is
detected within 0.7 m (the threshold defined in this work) of
the robot, the LLM is informed that an obstacle is present in
the front.

This environmental information is then used to construct the
Multimodal Prompt, which comprises the collected observa-
tions, a system prompt, and analysis instructions. The system
prompt outlines the robotic OSL task, defines the available ac-
tions, and provides relevant context. The analysis instructions
guide the LLM to generate responses in a structured format
using Step-by-Step Analysis [14]. The detailed LLM analysis
instructions are presented as follows.

2) LLM Analysis: Fig. 3 shows the step-by-step reasoning
instructions provided to the LLM. The analysis flow mirrors
human odor search behavior. When an odor of interest is
detected, visual processing is used to directly identify potential
odor sources. If visual reasoning fails to pinpoint the object,
olfactory cues guide the robot toward the odor’s direction.
The actions are chosen to avoid collision with surrounding
obstacles in the environment.

In the Vision Analysis, the goal is to use visual reasoning
to understand the surrounding environment of the agent and
to visually pinpoint the potential odor source. To achieve this,
the LLM is first tasked with detecting the overall scene (for
example, identifying a kitchen) and recognizing the objects
present (such as an oven) in the egocentric visual frame. The
LLM model is then tasked to compare the semantic definition
of the environment to the semantic definition of the sensed
odor ({goal} in the prompt). The LLM model assesses whether
any of these objects might be the source of the target odor.
If a potential odor source is detected within the visual frame,



Fig. 4. The two odor source locations within the search area.

the LLM selects an action to move toward it.
In the Olfactory Analysis, the LLM is instructed to com-

pare the current odor concentration value with the previously
sensed concentration value. If the current odor concentration
is greater than the previous time step, then it indicates that
the robot is approaching the odor source, and it is instructed
to continue this trajectory. On the other hand, decreasing
concentration indicates the robot is moving away from the
odor source, and thus it should reverse its trajectory.

In the Navigation Analysis, the LLM evaluates the sur-
rounding obstacles, i.e., the information derived from depth
sensing. The LLM model is also instructed to consider the
consequence of the last selected action in planning the next
action. This evaluation ensures that the chosen actions will
allow the robot to approach the odor source without collisions.

3) Action Decoder: After the LLM’s response, the Action
Decoder will convert the textual LLM’s response into an
action ID, i.e., 1 to 4, where 1-Forward, 2-Turn Right, 3-Turn
Left, and 4-Turn Back. Every time step, LLM is instructed
to select only one action ID. Then, the robot will follow the
selected action to update its position or orientation. It should
be mentioned that Only the Forward action will change the
robot’s location, and the other actions will only change the
robot’s orientation.

IV. EXPERIMENT AND RESULTS

A. Experiment Setup

To evaluate the performance of the proposed OSL naviga-
tion algorithm, we implemented it in a simulated household
environment using the AI2THOR [35] simulator. The sim-
ulated search environment is 5 m × 5 m. In experiments,
we created two search scenarios, where the odor source is
located at either the Microwave or the Garbage Can. The odor
plume concentration at any location within the search area
was calculated using Equation 2. For the Microwave, the odor
description is “smoke”, while for the Garbage Can, the odor
description is “rotten smell”.

Fig. 4 provides a top-down view of the odor plume distribu-
tions for both scenarios. We use the same parameters presented
in [36] for our odor simulator, i.e., qs = 2000 mg/s, D = 10
m2/s, τ = 1000 s, δt = 1. During the search process, the
robot is directed by the LLM to perform the generated action.
A successful search is defined as the robot reaching the odor
source location (i.e., the distance between the robot and the
odor source is less than a threshold, 0.8 m in this work) within
the decision-making step limit (i.e., 80 steps in this work). A
failure occurs if the robot is unable to reach the odor source

within this limit. In our experiments, the LLM model is GPT-
4o.

B. Search Results

1) Search Trajectories: Fig. 5 illustrates the search tra-
jectories of the proposed OSL navigation algorithm. In our
implementation, we incorporated an adaptive speed control
mechanism, where the robot adjusts its speed based on the
sensed odor concentration: when the detected concentration is
high, the robot slows down; when the concentration is low,
the robot moves faster. The rationale behind this design is
that when the robot is far from the odor source (i.e., low
odor concentration), it should move quickly to explore the
environment efficiently. Conversely, when it is near the odor
source (i.e., high odor concentration), it should slow down to
precisely locate the source. As shown in Fig. 5, the proposed
semantic OSL algorithm enables the robot to successfully
identify the odor source across different initial robot and odor
source locations.

C. LLM Reasoning

Fig. 6 presents the reasoning results of the LLM based on
the provided visual and olfactory inputs. The scenes, labeled
S1–S4, correspond to different moments during the search
process illustrated in Fig. 5. In S1, based on the detected
odor type “Smoke”, the LLM infers that the potential odor
source is a “Stove” or “Oven”. The directional inference is
accurate, as the actual odor source, “Microwave,” is located
above the stove. Regarding the olfactory analysis, the robot
detects an increase in odor concentrations, leading the LLM
to conclude that it is moving toward the correct odor source.
In the navigation analysis, the LLM is informed that there is
no obstacle ahead and, given the visual and olfactory analysis,
suggests Forward as the optimal action.

In S2, the robot does not detect any visually relevant objects
associated with the odor source. However, an increase in
sensed odor concentration suggests that the robot is moving
in the right direction. As a result, the LLM advises continuing
forward to approach the source. In S3, no useful visual objects
are detected, and olfactory observations indicate a decrease in
odor concentration, suggesting that the robot is moving away
from the source. In response, the LLM determines that the
best action is to turn back. In S4, neither useful visual nor
olfactory observations are available, and the robot’s front path
is blocked. Given this scenario, the LLM directs the robot to
turn right to continue exploring the search area.

D. Comparative Analysis

We compare the search performance of the proposed OSL
navigation algorithm with three other methods: Random Walk,
Vision-Only (VO), and Olfaction-Only (OO). In the Random
Walk approach, the robot moves forward until it encounters
an obstacle. Then, it randomly decides to turn left or right
and continues forwarding. The VO and OO algorithms also
employ the LLM for decision-making to generate a robot
action command. However, in VO, the LLM does not receive



Fig. 5. Search trajectories of the proposed semantic OSL navigation algorithm. Plots (a)-(c) are trajectories with the odor source at “Microwave”, and the
detected odor type is “Smoke”. (d)-(f) are trajectories with the odor source at “Garbage Can”, and the detected odor type is “Rotten Smell”. S1-S4, labeled
alongside the trajectories are sample scenes, where the agent’s decision-making results are presented in Fig. 6. The robot’s moving direction is labeled by the
arrows. In all searches, the robot successfully reached the odor source location.

TABLE I
THE COMPARATIVE ANALYSIS RESULTS OF THE PROPOSED OSL

NAVIGATION ALGORITHM AND OTHER ALGORITHMS

Avg. Steps
↓

Avg. Dist.
↓

Success Rate
↑

Random Walk 58.2 22.8 m 33%
Vision Only

(VO) 47.7 9.6 m 83.3%

Olfaction Only
(OO) 35.7 10.3 m 100%

The Proposed
Method 11.3 4.6 m 100%

odor concentrations, while in OO, visual information (i.e., the
image captured from the front-facing camera) is not provided.
All robot initial locations and odor source locations remain
the same as those presented in Fig. 5.

Table I presents the search performance results of the differ-
ent OSL navigation algorithms. The proposed semantic OSL
navigation algorithm outperforms all other methods across
evaluation metrics, including average decision-making steps,
average travel distance, and success rate (out of six trials per
method). Using Random Walk as a baseline, we observe that
LLM-based decision-making significantly improves search
performance. However, when only one sensory modality is
used, as in VO and OO, the robot’s search efficiency declines
compared to the integrated method.

Specifically, the VO approach struggles in cases where the
robot lacks meaningful visual cues to guide the search (e.g., S2
in Fig. 6), leading to a lower success rate. The OO approach
achieves a 100% success rate, but without visual information,
the robot takes longer to locate the source, resulting in sub-
optimal search performance. The proposed method, integrating
both visual and olfactory observations, achieves a 100% suc-
cess rate and the shortest traveling distance, compared to other
methods. These results highlight the advantage of integrating
semantic visual and olfactory information, demonstrating that
a multi-modal approach improves both the effectiveness and
efficiency of robotic OSL tasks.

The primary objective of our work is to demonstrate seman-
tic Odor Source Localization (OSL) navigation by integrating
both olfactory and visual sensory modalities. Many existing
OSL algorithms (such as those based on RL or DL) primarily
focus on olfactory-only methods. Our experiments show that
integration of vision with olfaction outperforms single sensory
modality-based vision-only and olfactory-only methods.

V. CONCLUSION AND FUTURE WORKS

This paper presents a semantic OSL navigation algorithm
that integrates both visual and olfactory observations to en-
hance OSL tasks. We leverage an LLM as the decision-
making agent to analyze sensory inputs, infer the possible odor
source location, and guide the robot toward it. Additionally, we
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Fig. 6. The reasoning outputs of the LLM with different visual and olfactory inputs. The scenes for obtaining S1-S4 are labeled in Fig. 5. For S1 and S2,
the odor source is the “Microwave”, and for S3 and S4, the odor source is “Garbage Can”. Key reasoning analysis for Visual Analysis, Olfactory Analysis,
and Navigation Analysis are labeled in Dark Teal, Orange, and Dark Green, respectively.

employ Chain-of-Thought reasoning to help the LLM exploit
semantic associations between detected odors and observed
visual targets. The proposed OSL navigation algorithm is
implemented in a simulated household environment, where
we evaluate its performance across two odor source search
scenarios and three robot initial positions, comparing it against
Random Walk, Vision-Only (VO), and Olfaction-Only (OO)
algorithms. Simulation results demonstrate that the proposed
multi-modal OSL navigation algorithm achieves the highest
success rate and shortest travel distance among all tested
methods.

The main innovation of this project lies in integrating vision
and olfaction through a multimodal LLM. The multimodal
GPT-4 model is capable of reasoning about the robot’s next
actions based on current visual and olfactory observations,
using common-sense knowledge. Our experiments indicate
that highly sophisticated reasoning is not required to guide
the robot effectively toward the odor source. Consequently,
the multimodal LLM was able to infer potential odor sources
in the environment, select appropriate exploratory actions,
and ultimately localize the true odor source with reliable
performance.

In future works, we plan to further explore semantic OSL
and the integration of visual and olfactory observations in

two directions. First, we will extend the approach to multi-
source searching scenarios, where multiple odor sources exist
in the environment and emit odor plumes simultaneously. This
extension will enable the navigation algorithm to operate in
more complex search environments with broader real-world
applications. Second, we will implement the proposed naviga-
tion algorithm into real-world tests. While the simulator used
in this study provides a highly realistic environment, a gap
remains between simulation and real-world conditions. Future
work will focus on implementing the proposed navigation
algorithm on a physical robot to evaluate its performance in
real-world search environments.
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